
Minimizing Data Transfers for Regular
Reachability Queries on Distributed Graphs

Quyet Nguyen-Van
Hung Yen University of

Technology and Education
Khoai Chau, Hung Yen

quyetict@utehy.edu.vn

Le-Duc Tung
The Graduate University for

Advanced Studies
Tokyo, Japan

tung@nii.ac.jp

Zhenjiang Hu
National Institute of

Informatics
Tokyo, Japan

hu@nii.ac.jp

ABSTRACT
Nowadays, there is an explosion of Internet information,
which is normally distributed on different sites. Hence, effi-
cient finding information becomes difficult. Efficient query
evaluation on distributed graphs is an important research
topic since it can be used in real applications such as: so-
cial network analysis, web mining, ontology matching, etc.
A widely-used query on distributed graphs is the regular
reachability query (RRQ). A RRQ verifies whether a node
can reach another node by a path satisfying a regular ex-
pression. Traditionally RRQs are evaluated by distributed
depth-first search or distributed breadth-first search meth-
ods. However, these methods are restricted by the total
network traffic and the response time on large graphs. Re-
cently, Wenfei Fan et al. proposed an approach for improv-
ing reachability queries by visiting each site only once, but it
has a communication bottleneck problem when assembling
all distributed partial query results.

In this paper, we propose two algorithms in order to im-
prove Wenfei Fan’s algorithm for RRQs. The first algorithm
filters and removes redundant nodes/edges on each local site,
in parallel. The second algorithm limits the data transfers by
local contraction of the partial result. We extensively eval-
uated our algorithms on MapReduce using YouTube and
DBLP datasets. The experimental results show that our
method reduces unnecessary data transfers at most 60%,
this solves the communication bottleneck problem.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; H.2.4 [Database Management]: Systems

General Terms
Algorithms, Performance

Keywords
Reachability Queries, Distributed Graphs, MapReduce

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SoICT’13 , December 05 - 06 2013, Danang, Viet Nam
Copyright 2013 ACM 978-1-4503-2454-0/13/12 ...$15.00.

1. INTRODUCTION
Graph data processing has been becoming increasingly im-

portant. There are many applications of reachability queries,
such as friends recommendations in social networks [14], de-
tecting signal pathways in protein interaction networks [17]
and querying XML documents [10]. However, the data may
be stored in different locations for some applications such as:
web mining, social network analysis, etc. It is complicated to
effectively exploit huge information in this distributed form.
In this paper, we focus on optimizations for the problem
of answering reachability queries with a regular expression
on distributed graphs. We show how to minimize the data
transfers needed for checking whether there exists a path
between two vertices in a distributed graph such that it sat-
isfies a regular expression.

A number of algorithms have been proposed to process
graph reachability queries [6, 12, 11, 4, 5]. However, these
methods only process general graphs and require a large
of memory. Moreover, none of them support distributed
processing. Although graph reachability is a popular prob-
lem, there are still not so many research studies focusing on
query processing on distributed graphs. Wenfei Fan et al.
[9] propose several algorithms based on partial evaluation
that support three classes of reachability queries. Therein,
a regular expression can be answered with time complex-
ity O(|Fm||R|2 + |R|2|Vf |2) and a total network traffic of
O(|R|2|Vf |2), where |Fm| is the size of the largest fragment
in the distributed graph G, |R| is the size of regular expres-
sion R, |Vf | is the number of nodes that have edges across
different subgraph in G. In fact, databases could store ex-
tremely large graphs (i.e. hundreds of millions nodes and
edges on Twitter social network [23], billions nodes/edges
on Friendster social network [24]). Therefore, the number
of cross-edges could be very large leading to a bottleneck
when processing queries on distributed graphs. In this pa-
per, we target on solving this problem by minimizing the
data transfers via network.

The basic idea of our approach is to filter redundant data
and locally contract partial results. We first find all nodes
in a sub dependency graph of a local site not connected
through an edge from any nodes in other sub dependency
graphs or the nodes that can not reach any nodes. This
can reduce unnecessary data transfers via network to the
coordinator site. In Section 3.3, we show that the amount
of redundant data is quite large. Moreover, we can also
reduce total network traffic by contracting the size of the sub
dependency graphs. The techniques are combining together
for efficiently answering RRQs on distributed graphs.

Our work as described in this paper makes the following
contributions.

• We propose an efficient algorithm to filter redundant
data for local evaluation, in parallel (Section 4.1). It
removes large amount of unnecessary data when as-
sembling all distributed partial query results. Addi-
tionally, our method is much simple to apply.

• We present a local contract algorithm (Section 4.2), to
reduce the size of partial result on each local site. It
makes partial result equivalent to what is generated by
Wenfei Fan’s algorithm for local evaluation.

• We demonstrate that our method delivers excellent
performance, with the amount of data shipped to coor-
dinator site with real-life graphs. Indeed, we compare
our implementation with Wenfei Fan’s re-implementation
[9] and show that, for real-life datasets YouTube and
DBLP, our method can remove up to 60% of data be-
ing redundant in the dependency graph.

The rest of this paper is organized as follows. In Section
2, we introduce the distributed graphs and regular reach-
ability queries to answer RRQs. In Section 3, we analyze
three steps of the algorithm for answering RRQs based on
partial evaluation in [9] and expose several discussions re-
lated to the redundant data. We describe the improvements
of our two algorithms in Section 4. In Section 5, we give an
implementation model based on MapReduce framework and
experimental results using real-life graphs. Section 6 shows
an overview on related work and conclude in Section 7.

2. DISTRIBUTED GRAPHS AND REGULAR
REACHCHABILITY QUERIES

This section shows terms and definitions on distributed
graphs and regular reachability queries.

2.1 Distributed Graphs
We consider the problem of efficient answering reachabil-

ity queries on node-labeled, directed distributed graph. A
graph G is a tuple G = (V, E, L), where V is a finite set
of nodes; E is a finite set of edges; L is a function which
defines on V such that for each node v in V, L(v) is a label
in a set of labels Σ.

In particular, the graph G is often partitioned into k
different sites, where each site is a subgraph. The dis-
tributed graph G is defined by a set of subgraphs includ-
ing G1, G2, ..., Gk and a cross-graph Gc. Here, a subgraph
Gi is denoted by (Vi, Ei, Li), where Vi ⊆ V ; Ei ⊆ E;
∀v ∈ Vi → Li(v) = L(v). The cross-graph Gc = (Vc, Ec),
where Ec is a set of edges that connect subgraphs, called
cross-edges, Vc is a set of nodes that have cross-edges to or
from subgraphs.
(1) Vc = ∪ki=1(Vi.in ∪ Vi.out), where (a) Vi.in is a set of
input nodes of Gi with each node v ∈ Vi.in existing at least
one edge from node u in other subgraphs and Vi.in ⊆ Vi,
(b) Vi.out is a set of output nodes of Gi with each node
v′ ∈ Vi.out in other subgraphs existing at least one edge
from a node v in Gi connecting to v′.
(2) Ec = ∪ki=1cEi, where cEi is a set of all cross-edges of the
subgraph Gi, its edges (v, u) are determined by the node
v in Gi and the node u in another subgraph. We can see

Figure 1: A distributed graph as researchers network

Table 1: Determining input and output nodes G

Fi Vi.in Vi.out
F1 {3, 5} {6, 7, 11, 12}
F2 {6, 7, 9} {3, 14, 16}
F3 {11, 12, 14, 16} {5, 9}

the relationship of graph G, the set of subgraphs and cross-
graph Gc as following: V = ∪ki=1Vi and Vi ∩ Vj = ∅ if i 6= j;
E = Ec ∪ (∪ki=1Ei) and Ei ∩ Ej = ∅ if i 6= j. In fact, data
at each site include a subgraph Gi, a set of output nodes
Vi.out of Gi and a set of cross-edges cEi of Gi. Overall data
in a single site is a fragment of graph G that is denoted by
Fi = (Vi ∪ Vi.out, Ei ∪ cEi, Li). Therefore, query processing
on each site means we are evaluating on a fragment of graph
G.

Example 1: Figure 1 illustrates a graph G of researchers
network, where each node denotes a researcher with iden-
tity number (e.g., 1, 2, 3) and one research interest (e.g.,
Parallel Computing (PC), Programming Languages (PL),
Parallel Programming (PP), Software Engineering (SE)),
each directed edge u → v denotes (u, v), it means that re-
searcher u can contact to researcher v. In this figure, the
graph G is partitioned into three subgraphs G1, G2, G3 and
stored on three sites S1, S2, S3, respectively. Each subgraph
stores information of researchers from three different coun-
tries. Therein, a lot of researchers in a country may contact
one or many researchers in another country. The graph G
is called a distributed graph. Here, we indicate the input
and output nodes on each fragment F1, F2, F3 as in Table 1.
Besides, a cross-graph Gc of the graph G is defined by a set
of nodes Vc = {2, 3, 4, 5, 6, 7, 9, 11, 12, 14, 16} and a set
of cross-edges Ec that consists of all edges connect among
other fragments (e.g., (2, 6), (3, 7)...), here, a cross-edge is
drawn with a dashed arrow.

2.2 Regular Reachability Queries
In reality, a regular expression is often used for evaluating

graph queries. A regular reachability query is a 3-tuple de-
noted by qr(s, t, R), where s is a start node, t is a terminal
node and R is a regular expression. RRQs check whether
there exists a path ρ from node s to node t in G such that it

satisfies a regular expression R, which is denoted s
ρ−→ t. The

result of this kind of query is True if there exists at least one
path ρ from start node s to terminal node t in the graph G,
where ρ is a value that satisfies R, otherwise returns False.
Here, R is a regular expression over Σ:

R = ε | a | RR | R ∪ R | R*,

where ε is an empty value, a is a label in Σ and RR, R ∪
R and R* denote alternation, concatenation and the Kleene
closure, respectively.

3. DISTRIBUTED REGULAR REACHABIL-
ITY QUERIES

In this section, we describe an approach to answering
RRQs on distributed graphs that was first shown in [9].

3.1 Partial Evaluation
An introduction to partial evaluation is given in [13]. This

technique shows several different types of program optimiza-
tion by specialization. The major motivation for doing par-
tial evaluation is to increase the speed of processing. Pro-
cessing program p is divided into k parts (p1, p2, ..., pk) that
execute individually and guarantee to behave in the same
way. The result of pi is a subset of p’s result. Normally,
a program pi runs faster than p. By employing these ad-
vantages of partial evaluation technique, [3, 8, 9] have pro-
vided efficient algorithms for query evaluation on distributed
graphs.

3.2 Query Automaton
A regular expression can be converted into an automaton

before using it to match paths. We use a non-deterministic
automata (NFA) to represent query where the definition
NFA as in [2]. In [2], an automaton M is converted in linear
time from a regular expression R. A query automaton qr is
defined by a start node s, a terminal node t and an automa-
ton M. We denote qr = (s, t,M), where M is a 5-tuple, as
follows:

M = {Q,T, µ, qs, qt},

where Q is a finite set of states, T is a set of transitions
between two states, µ is a function that assigns each state a
label in R, qs is an initial (or start) state and qs ∈ Q, qt is
a terminal state and qt ∈ Q.

Example 2: Suppose we have a graph G as described
in Example 1. An actual situation as the following: a re-
searcher has identity number 1 (id = 1, is called researcher
1). Currently, researcher 1 has a science project and wants
to collaborate with researcher 16 in another country. There-
fore, researcher 1 needs to find whether there exists a com-
munication with researcher 16 through a few other researchers
in other fields. A regular expression that describes the re-
quirement of researcher 1 is the following: R = ((PL)*
PP) ∪ (SE)*). It means that researcher 1 wants to con-
tact researcher 16 through a chain of researchers in the
Programming Languages (PL) field then be via a researcher
in the Parallel Programming (PP) field. Researcher 1 also
accepts the contacts through the list of researchers in the
field of Software Engineering (SE). Here, the query automa-
ton qr = (1, 16, ((PL)* PP)) ∪ (SE)*) is illustrated in Figure
2. This query will be answered in the examples later.

Figure 2: The illustration a regular expression is represented
by automaton

3.3 Answering RRQs based on Partial Evalu-
ation

Answering RRQs on the graph G is equivalent to find-
ing of existence paths accepted by the automaton M. Here,
P(R) denotes the path, which satisfies R in the graph G.
Let P (R) = {v1 → v2 → ... → vn}, where vi ∈ V (i = 1,
2,..., n). The automaton M accepts P(R) if a sequence of
states q1, q2, ..., qn exists in Q with the following conditions:
v1 = s, vn = t, L(vi) = µ(qi) for (i = 1, ..., n), where s is a
start node and t is a terminal node in the query qr . We say
that node vi is a match of a state qi in M.

Algorithm 1 Using procedure localEval to get partial re-
sult

Input: A fragment Fi and query automaton qr(s, t,M)
Output: Partial answer Pi(R) on fragment Fi
1: Pi ← ∅;
2: if s ∈ Vi then
3: Vi.in← Vi.in ∪ {s};
4: end if
5: if t ∈ Vi.out then
6: Vi.out← Vi.out ∪ {t};
7: end if
8: for each node v ∈ Vi do
9: v.visit ← false;

10: end for
11: for each node v ∈ Vi.out do
12: v.rvec ← ∅;
13: for each state q ∈ Q do
14: if v = t and q = qt then
15: v.rvec[q] ← true;
16: else
17: if L(v) = µ(q) then
18: v.rvec[q] ← X(v,q);
19: else
20: v.rvec[q] ← false;
21: end if
22: end if
23: end for
24: v.visit ← true;
25: end for
26: for each node v ∈ Vi.in do
27: v.rvec ← getRvec(v, Fi, qr);
28: Pi ← Pi ∪ v.rvec;
29: end for
30: Send Pi to the coordinator site Sc

Algorithm 2 Procedure getRvec computes the vector
v.rvec for a node v

Input: A node v, a fragment Fi, a query automaton
qr(s, t,M)

Output: The vector v.rvec
1: if v.visit = true then
2: return v.rvec;
3: end if
4: for each state q ∈ Q do
5: v.rvec[q] ← false;
6: end for
7: for each node u ∈ ChildrenNodes(v, Fi.V) do
8: if u.visit = false then
9: u.rvec ← getRvec(u, Fi, qr);

10: end if
11: for each state q ∈ Q do
12: if L(v) = µ(q) then
13: v.rvec[q] ← v.rvec[q] ∪ getVec(u, u.rvec, q,

qr);
14: end if
15: end for
16: v.visit ← true;
17: end for
18: return v.rvec;

The approach to answering RRQs based on partial eval-
uation and using query automaton presented in [9] consists
of 3 steps, as follows:

Step 1: Construct the query automaton M from regular
expression R at coordinator site, and then send it to other
sites.

Step 2: After receiving the query from Sc, each site Si
performs local evaluation to get partial result Pi, in paral-
lel. Each partial result indicates that the nodes might be
related to the final answer of query qr on graph G. Those
relationships are among input and output nodes. In Pi, the
input node v can reach output node u, but it does not know
if u can reach terminal node t or not. Therefore, a Boolean
variable is used to associate with output nodes. Now, Pi
can be represented as a set of vectors of Boolean Formulas
associated with nodes in Vi.in. This step is illustrated by
Algorithm 1 and Algorithm 2.

Step 3: Combine the partial results into a dependency
graph Gd on coordinator site Sc. Then a breadth-first search
(BFS) algorithm is used to check whether start node s can
reach terminal node t on Gd.

Next we look into the details of the two core algorithms in
this approach, which would help to understand its problems
and our later improvement.

Algorithm 1 computes a partial result to query qr. Firstly,
(1) initializes Pi is an empty set of vectors, where v.rvec ∈ Pi
to be a vector of O(|Q|) entries, where Q is the set of states
in M, the entry v.rvec[q] is a Boolean Formula that indicates
whether node v matches state q in Q; gets and sets the input
nodes in Vi.in and the output nodes in Vi.out. (2) It then
computes the vector v.rvec for each output node v in Vi.out,
as follows. If node v is a terminal node then True value
is set to v.rvec[qt]. Otherwise, if v matches state q ∈ Q in
M (L(v) = µ(q)) then it sets a Boolean variable X(v,q) to
v.rvec[q], if not, value v.rvec[q] is set to false. Finally, (3) it
computes the vector for each input node v ∈ Vi.in by calling
procedure getRvec.

Figure 3: Dependency graph Gd

Algorithm 2 computes and returns a vector of Boolean
Formulas for each input node in Fi. It is a recursive pro-
cedure, the vector rvec of each input node is computed via
its children nodes. This procedure calls a simple procedure
getVec. Here, getVec gets the value of rvec of the input node
u at state q, which was computed before.

Example 3: In this example, we use the query automa-
ton described in Example 2. According to the algorithms
above, to answer query qr = (1, 16, ((PL)* PP) ∪ (SE)*),
we need to perform a local evaluation on three sites. We
then collect the partial results P1, P2, P3 to construct a de-
pendency graph and get the final answer. Here, we only
illustrate the local evaluation on fragment F1. Initially,
P1 = ∅;V1.in = {3, 5};V1.out = {6, 7, 12}. In fragment
F1, node id = 1 is a start node, so node 1 is put into V1.in.
The vector Boolean Formulas of each node in F1 consists of
five entries, corresponding to the states (1, PL, PP, SE, 16)
in the query automaton. For the output nodes, (false, false,
false, X(6,SE), false), (false, false, X(7,PP), false, false), and
(false, X(12,PL), false, false, false) are corresponding to each
node in sets of {6, 7, 12}. The vector rvec for each input
node in V1.in is computed by procedure getRvec, the results
are as follows: (X(6,SE) ∨ X(7,PP) ∨ X(12,PL), false, false,
false, false), (false, X(7,PP) ∨ X(12,PL), false, false, false),
(false, X(7,PP) ∨X(12,PL), false, false, false), corresponding
to each node in sets of {1, 3, 5}. It is also the result of
partial result P1 which will be sent to coordinator site. Sim-
ilarly, we can compute the partial results P2 and P3 of two
fragments F2 and F3, respectively.

A dependency graph Gd is constructed as shown in Figure
3. Here, a Boolean variable X(v,q) in the partial result is a
node in Gd denoted as Xv (e.g., X1, X2). After that, the
procedure evalRRQ (not shown) is called, which uses BFS
algorithm to search for the final answer. Here, there exists a
path on Gd from start node to terminal node as follows: X1
→ X12 → X16. In this example, a path in graph G which
satisfies query qr is: ρ = 1 → 3 → 5 → 12 → 15 → 16.
Therefore, the final answer to query qr in this example is
True.

Discussion. The approach in [9] improves for answer-
ing RRQs on distributed graphs by visiting each site only
once. However, it is difficult to implement such approach on
large graphs (e.g., several hundred million nodes) due to the
amount of data transfers to one machine (coordinator site
Sc). The bottleneck occurs on Sc when both the input and
output nodes increase and the number of paths satisfying a
query raises.

We detected a lot of redundant nodes/edges in partial re-
sults which sent to coordinator site. These nodes/edges are

Figure 4: Dependency graph Gd after use Local Filter algo-
rithm

unnecessarily finding answer to query qr. Indeed, we can
see dependency graph in Figure 3, the set of nodes {X3,
X5, X6, X7, X9, X14} and the set of edges {(X1, X6),
(X1, X7), (X3, X7), (X3, X12), (X5, X7), (X5, X12), (X9,
X16), (X14, X16)} is unnecessary for finding the final an-
swer. We can not find any path satisfying the query qr via
these nodes/edges. Therefore, our work proposes method
to find and remove redundant nodes/edges. The effective-
ness of our work avoids the communication bottleneck when
query processing on large graphs.

4. OUR APPROACH
In this section, we present two algorithms that solve com-

munication bottleneck on the coordinator site while assem-
bling and searching the final answer for RRQs. We remove
the amount of redundant data at each local site in parallel
before it is sent to coordinator site. First, an effective filter-
ing technique is given in Section 4.1. Second, we perform a
modification of the local evaluation that is shown in Algo-
rithm 1. This algorithm minimizes the size of dependency
graph Gd, so we named it Local Contract. It is presented in
Section 4.2.

4.1 Local Filtering
In this section, we present how to reduce the amount of re-

dundant data in dependency graph Gd = (Vd, Ed, Ld). Here,
the problem is: How to detect redundant nodes/edges on
each local site? We remove all redundant nodes/edges on
each local site as soon as they are detected. To detect the
redundant nodes/edges we give two definitions as follows:

Definition 1 (Node Redundant). A node u is called
redundant in dependency graph Gd if and only if it does not
have any node v ∈ Vd connecting to u or from u to v, where
u 6= v and u is not a start or terminal node.

Definition 2 (Edge Redundant). An edge (u, v) is
called redundant in dependency graph Gd if and only if node
u or v is a redundant node, where u 6= v and u, v ∈ Vd

Based on Definitions 1 and 2, we develop an algorithm to
find and remove redundant nodes/edges on each local site,
in parallel. We now call it Local Filter (LF) algorithm. It is
described in Algorithm 3.

Example 4: Consider again query qr(1, 16, R) on graph
G as described in Example 3. We perform a local filter from
the partial results shown in previous example. The filtering
of redundant nodes/edges on F1 is as follows: (1) a sub
dependency graph Gs is made from P1, here, Vs.in = {1,
3, 5}, Vs.out = {6, 7, 12} and cEs = {(1, 6), (1, 7), (1,
12), (3, 7), (3, 12), (5, 7), (5, 12)}; (2) a set of reachable
input nodes from three fragments reachInputs = {1, 3, 5, 9,
12} and the set of reachable output nodes reachOutputs =
{6, 7, 12, 16}; (3) find and remove: for the nodes in Vs.in,
input node 1 appears in reachOutputs ∪ {1}, but nodes 6, 7
do not appear in reachInputs ∪ {16} , therefore, the set of
edges {(1, 6), (1, 7)} is removed from cEs. The input node
3 and 5 do not appear in reachOutputs ∪ {1}, remove {3, 5}

Algorithm 3 Using procedure LocalFilter to find and re-
move redundant nodes and edges from partial answer Pi;

Input: The partial answer Pi; reachInputs is a set of
reachable input nodes from all fragments; reachOut-
puts is a set of reachable output nodes from all frag-
ments; s is a start node; t is a terminal node.

Output: The new sub dependency graph Gsi
1: Construct sub dependency graph Gs = (Vs.in ∪
Vs.out, cEs, Ls) from partial answer Pi;

2: for each node v ∈ Vs.in do
3: if node v 6∈ {reachOutputs ∪ {s}} then
4: Vs.in← Vs.in/{v};
5: cEs ← cEs/{v.edges};
6: else
7: for each edge (v, u) ∈ v.edges do
8: if node u 6∈ {reachInputs ∪ {t}} then
9: cEs ← cEs/{(v, u)};

10: end if
11: end for
12: end if
13: end for
14: for each node u ∈ Vs.out do
15: if has no edge coming node u then
16: Vs.out = Vs.out/{u}
17: end if
18: end for
19: Send new sub dependency graph Gs to coordinator site;

from Vs.in and remove a set of edges {(3, 7), (3, 12), (5, 7),
(5, 12)} from cEs. Now, Vs.in = {1}, Vs.out = {6, 7, 12},
cEs = (1, 12). (4) For the output nodes in Vs.out, node 6
and node 7 do not appear in any edges ∈ cEs, therefore {6,
7} is removed from Vs.out. Finally, a new sub dependency
graph Gd1 = (Vd1, Ed1) is the result of the filter, where Vd1
= {1, 12} and Ed1 = {(1, 12)}.

It is similar to filter on F2 and F3. Figure 4 is a depen-
dency graph after using our algorithm. It shows an efficient
optimization for answering RRQs on distributed graphs.

4.2 Local Contraction
In this section we improve the local evaluation in Algo-

rithm 2 to limit the redundant nodes/edges for computing
the partial result.

Our idea is described as in Algorithm 4. Here, a Boolean
variable can be set between two input nodes (line 7-14). If
an input node v can reach another input node u, v matches
state q and u matches state q’ then X(u,q′) is put into
v.rvec[q] instead of a Boolean Formulas of u at state q’,
where u, v ∈ Vi.in and q, q’ ∈ Q in M. In case node v is an
input node, after v.rvec is computed (line 21), we continue
to filter and remove the Boolean variable in v.rvec occur-
ring simultaneously in v.rvec and v’.rvec, where v’ is also an
input node and v is reachable v’ (line 22-32).

Example 5: In this example, we focus on computing par-
tial result P1 for query qr(1, 16, R) on fragment F1 using
procedures: localEval and getRvecEq above. The computing
of P1 in this example is different to Example 3 by comput-
ing vectors of Boolean Formulas for input nodes. Therefore,
we show the results of computing vector rvec for the in-
put nodes ∈ V1.in = {1, 3, 5}. Figure 5 shows two sub
dependency graphs on F1 with two different computation
ways. Intuitively, we can see that the size of Gsd1 using Lo-

Figure 5: Sub dependency graphs on fragment F1, a) Com-
pute the using Local Evaluation in Algorithm 1, b) Compute
the using our modifying algorithm with Local Contraction

cal Contract method is smaller than only using Wenfei Fan’s
algorithm.

5. IMPLEMENTATION AND EXPERIMENTS
In this section, we present our implementation using MapRe-

duce and show experimental results. We used real-life datasets
as well as created graphs for the evaluation. We also com-
pared our algorithms with Wenfei Fan’s re-implementations
available and show results for graphs with different size and
the number of partitions..

5.1 MapReduce Overview
MapReduce [7] is a programming model and an associated

implementation for processing and generating large datasets.
Users specify a map function that processes a key/value pair
to generate a set of intermediate key/value pairs, and a re-
duce function that merges all intermediate values associated
with the same intermediate key. Written programs in this
functional style are automatically parallelized and executed
on a large cluster of commodity machines. A MapReduce
job usually splits the input dataset into independent chunks
which are processed by the map tasks. The outputs of the
maps are sorted then input to the reduce tasks. Typically
both the input and the output of the job are stored in the
Hadoop Distributed File System (HDFS) [1]. The job is
finished when all map and reduce tasks are completed.

The mechanism of MapReduce is consistent for imple-
mentation algorithms using partial evaluation technique as
shown in Section 3.1. We also utilize this advantage to per-
form efficiently the optimization performance of answering
query on distributed graphs (see Section 4).

5.2 Implementation
We present techniques using MapReduce to implement

our algorithms. The answering RRQ model is shown in Fig-
ure 6. We use two MapReduce jobs in our implementation.

In the first job, we perform a local evaluation in parallel
by calling procedure LocalEval as in Algorithm 5. Each
map task is assigned a different key to send its partial result
to second job. Specially, we do not need to use a reducer
in the first job, as used in the usual pattern of MapReduce
framework. Time is reduced by skipping the shuffle step
between Mapper and Reducer. The result of each map task
is stored in HDFS as follows: (1) extract input nodes in
partial result and save into a HDFS file in a folder Iset with
file name format <key>.txt ; similarly in the output nodes it
is stored in the folder Oset ; (2) the partial result is written

Algorithm 4 Using procedure getRvecEq to modify algo-
rithm to minimal equivalent sub dependency graph qr

Input: A node v, a fragment Fi, a query automaton
qr(s, t,M)

Output: The vector v.rvec
1: if v.visit = true then
2: return v.rvec;
3: end if
4: for each state q ∈ Q do
5: v.rvec[q] ← false;
6: end for
7: for each node u ∈ ChildrenNodes(v, Fi.V) do
8: if u.visit = false then
9: u.rvec ← getRvec(u, Fi, qr);

10: end if
11: for each state q ∈ Q do
12: if L(v) = µ(q) then
13: if u ∈ Vi.in and u matches q’ ∈ Q then
14: v.rvec[q] ← v.rvec[q] ∪{X(u,q′)};
15: else
16: v.rvec[q] ← v.rvec[q] ∪ getVec(u, u.rvec,

q, qr);
17: end if
18: end if
19: end for
20: v.visit ← true;
21: end for
22: if v ∈ Vi.in then
23: for each state q ∈ Q do
24: for each X(v′,q) ∈ v.rvec[q] do
25: if v′ ∈ Vi.in and ∃X(u′,q) ∈ v′.rvec[q] then
26: if X(u′,q) ∈ v.rvec[q] then
27: v.rvec[q] ← v.rvec[q]/{X(u

′, q)} ;
28: end if
29: end if
30: end for
31: end for
32: end if
33: return v.rvec;

Algorithm 5 Procedure LocalEvalMapper

Input: A pair key/value < i, Fi >
Output: A pair key/value < i, Pi >
1: Get query automaton qr(s, t,M) from Distributed

Cached File System
2: Pi ← localEval(Fi, qr);
3: Construct sub dependency graph Gs =

(Vs.in ∪ Vs.out, cEs, Ls) from Pi;
4: Write Vs.in and Vs.out to HDFS with two files, respec-

tively
5: Send < i, Pi > to mapper i in Job 2

Algorithm 6 Procedure LocalFilterMapper

Input: A pair key/value < i, Pi >
Output: A pair key/value < i,Gdi >
1: Get query automaton qr(s, t,M) from Distributed

Cached File System
2: reachInputs← getAllReachInputs();
3: reachOutputs← getAllReachOutputs();
4: Gdi ← localFilter(Pi, reachInputs, reachOutputs, s, t);
5: Send < 1, Gdi > to a reducer in Job 2

Algorithm 7 Procedure EvalReducer

Input: A list of pair key/value < 1, Gdi >
Output: The Boolean value finalAnswer for query qr
1: Get query automaton qr(s, t,M) from Distributed

Cached File System
2: for each pair <1, Gdi> from client site do
3: Gd ← Gd ∪Gdi;
4: end for
5: finalAnswer ← EvalRRQ(Gd, qr);
6: return finalAnswer;

Figure 6: Model optimization for answers regular reachabil-
ity query in MapReduce

by Mapper to HDFS with a corresponding key.
The second job collects the partial answers and searches to

get final answer. It is shown in Algorithm 6 and Algorithm
7. Here, each map task in the second job (a) reads all input
nodes in the folder Iset , all output nodes in the folder Oset
and removes duplicate values simultaneously; (b) gets the
partial answer which is stored in HDFS by map task in the
first job; (c) performs the filtering redundant nodes/edges
by calling procedure LocalFilter ; (d) sends partial answer
by only one key for all map tasks to the reducer. Further on,
the reducer assembles all partial results and calls procedure
EvalRRQ to get the final answer to query qr.

Thus, our implementation model using MapReduce is dif-
ferent from the model in [9]. Here, we use two maps and one
reduce function instead of one map and one reduce function
as in [9]. Based on this model we can perform the filtering
of redundant data.

5.3 Experimental Settings
The setting for the experiment used to execute algorithms

in this paper is the following.
Environment setting. Our experiments were run on

Edubase Cloud System1. We built a Hadoop environment
from five virtual machines on the Cloud: one machine for
master node, and four others for compute nodes. Each com-
pute node has 8 CPUs and 24GB of RAM. All algorithms
are implemented in Java.

Real-life dataset. Table 2 lists the real graphs that
we used. YouTube2 a social network of videos, where each

1http://edubase.jp/cloud
2http://netsg.cs.sfu.ca/youtubedata/

Table 2: Real-life datasets

Dataset |V| |E| |L|
Youtube 914,300 2,285,709 13
DBLP 714,207 885,793 3,815

video is a node in the graph with attributes (e.g., category)
and each edge indicates a recommendation, and whether a
video is related to another video. DBLP3 a citation network
dataset [21] in which each node is a paper associated with
attributes (e.g., publication venue), each edge shows if a
paper is cited by another paper.

We have partitioned real-life graphs by using GraphLab4

and synthetic graphs G into a set of partitions. Here, we
first chose the number of partitions as 32. Then we increase
this number by 64 to raise it over the number of cross-links
among partitions.

Random Query sets. We also implement a random
generator algorithm to create a set of queries from Σ. By
fixing the number of states and transitions we generate a
set of queries. To partition the graph by GraphLab, we
converted video ids in YouTube dataset from string type to
integer. We generated the query that checks whether there
exists a path from a video id to another video id by limitation
of the categories (e.g., Music, Entertainment). For DBLP
dataset, the query determines whether a paper can reach
another paper by limitation of the publication venues (e.g.
PPoPP, VLDB).

5.4 Experimental Results
In this section, we present experimental results of our im-

plementation using real-life datasets of YouTube and DBLP.
Moreover, we also compare the total edges in the dependency
graph with the result generated by Wenfei Fan’s algorithm
(called WFA from now on).

To evaluate the efficiency and scalability, we varied the
graph size from 100K to 3.2M on YouTube dataset and from
100K to 1.6M on DBLP dataset. The comparison among
algorithms is based on executions by the one query. Figure
7 shows size of reduction of the dependency graph with real-
life datasets by varying the number of partitions.

The first experiment is on YouTube data with 6 different
graph sizes. We choose randomly a query with 4 states and
6 transitions to evaluate efficiency of our method. As shown
in Figure 7(a), the size of the dependency graph in our al-
gorithms is smaller than that in WFA. Indeed, we compute
the average reduction in the number of edges in dependency
graph and show that: (1) only Local Contract (called LC) is
reduced by 39%; (2) only Local Filter (called LF) is reduced
by 38%; (3) the combination LC + LF is reduced by 60%.
In addition, we also evaluate the efficiency by increasing the
number of partitions to 64. Hence, the total number of input
and output nodes is raised. As result, the amount of data
transfers via network grows. Similarly, we show the results
in Figure 7(b). More specifically, we use the same query in
the case of 32 partitions and the average reductions are 41%,
30%, and 58% corresponding to LC, LF, and (LC + LF).

Similarly, for experiments on the DBLP dataset, we use
5 variations in the graph size. In case of 32 partitions, the
results are shown in Figure 7(c). Here, our improvements

3http://arnetminer.org/citation
4http://graphlab.org/

(a) YouTube dataset with 32 partitions (b) YouTube dataset with 64 partitions

(c) DBLP dataset with 32 partitions (d) DBLP dataset with 64 partitions

Figure 7: Size reduction of dependency graph by varying size of graph and the number of partitions

still reduce large amounts of redundant data. Therein, Lo-
cal Filter algorithm is the most dominated with an average
reduction of 69%. The combination of Local Filter and Lo-
cal Contract is reduced by 64%. By using Local Contract in
this dataset it is reduced by 16%. We found an efficiency
reduction when increasing the number of partitions to 64.
The corresponding results with LC, LF, and (LC + LF) are
8%, 60%, and 59%. Those results are illustrated in Figure
7(d).

Besides, the computation time is shown in Figure 8 for the
experiment on YouTube data with 32 partitions. Here, time
differences among experiments with different graph sizes is
not much. It fluctuates from 24 seconds to 26 seconds with
Local Filter and to 30 seconds with the combination of Local
Contract and Local Filter. We also illustrate time of WFA
in Figure 8.

Analysis. The experimentation on the two datasets above
indicates that our method reduced large amount of redun-
dant data when answering RRQs on distributed graphs. The
efficiency of the techniques is different in each dataset. In-
deed, Local Contract efficiently reduces the size of the de-
pendency graph on YouTube dataset by approximately 40%.
The combination of Local Contract and Local Filter is the
most effective technique on the YouTube dataset with a re-
duction of 60% in the amount of redundant data.

However, for the DBLP dataset, Local Contract seems to
be less effective reducing only 16% on 32 partitions and 8%
on 64 partitions. In this case, Local Filter is the most ef-
fective technique with an amount of redundant data reduc-
tion of 69% and 60% corresponding to 32 and 64 partitions.

Figure 8: The average execution time in answering RRQs
on YouTube dataset with 32 partitions

The difference is due to the size of label set in YouTube
data (|L| = 13) dramatically smaller than DBLP data (|L|
= 3,815) (see Table 2). On the other hand, the size of graph
of YouTube data is larger than that of DBLP data. There-
fore, the relationship among input nodes in each fragment
is becoming denser for YouTube data. This is an advantage
for Local Contract. Thus, we can choose the appropriate
technique depending on the characteristics of the distributed
graphs.

6. RELATED WORK
There are two approaches to answer a reachability query.

It can be processed traversing from a node to another node
using distributed breadth first search (DBFS) or distributed
depth first search (DDFS) over the graph on demand (see
[22]). However, the problem with DFS is difficult to paral-
lelize [16]. Mark Sevalnev in [18] gave a DBFS algorithm
on Hadoop-framework which had time efficiency of O(V +
E) ∗ V ∗ log(V)), where V is the total number of nodes and
E is the total number of edges in a graph. It takes nearly
cubic time depending on graph size. The former requires
too much time in querying and the latter requires too much
space. Therefore, the two approaches might be infeasible.

Several approaches have been developed for evaluating
queries on distributed graphs. Dan Suciu in [20] proposed an
approach to evaluate queries on semistructured databases,
and an extension is given in [19] based on message pass-
ing. It divides the query processing into a set of processes.
Therein, each process will compute and deliver its results
to other processes. It takes a bounded by O(n2) for the
amount of data transfers via network, where n is the total
of cross-edges. In recent years, several systems have been de-
signed to support extremely large graphs such as Malewicz
et al. with Pregel [15]. It is also based on message pass-
ing. Yildirim et al. proposed Grail system which stands for
graph reachability indexing via randomized interval labeling
(see [25]).

Recently, Wenfei Fan et al. in [9] proposed efficient al-
gorithms for answering three classes of reachability queries
on distributed graphs based on partial evaluation. Therein,
both the total computation time and the total network traf-
fic depend on the total of number of cross-edges and the
number of states in the query automaton. However, it has a
communication bottleneck problem when assembling all dis-
tributed partial query results. This is the problem that we
solved in this paper. Here, the large amount of redundant
data is detected and removed by our method, which is not
found in the Wenfei Fan’s algorithm.

7. CONCLUSION
We have proposed two algorithms to reduce data trans-

fers for answering regular reachability queries on distributed
graphs using MapReduce. Our algorithms contract partial
results and filter large amount of redundant data, locally.
Thus, the communication bottleneck is limited when assem-
bling all distributed partial query results. More significantly,
if the communication bottleneck problem is solved, it will in-
crease scalability for query evaluating on distributed graphs.
Hence, our method has a lot of potential applications in
areas from social network analysis, web mining, to ontol-
ogy matching. Our experimental results on real-life graphs
demonstrated the effectiveness of our method.

In the future, we will apply our approach to optimize other
queries on distributed environment with MapReduce. We
are currently developing distributed evaluation algorithms
on semistructured data. Another research direction is to ex-
tend our approach to efficiently answer select-where queries
on distributed databases.

8. REFERENCES
[1] D. Borthakuro. Hdfs architecture guide. http://

hadoop.apache.org/docs/stable/hdfs_design.html,
June 2013.

[2] A. Brüggemann-Klein. Regular expressions into finite
automata. Theoretical Computer Science,
120(2):197–213, 1993.

[3] P. Buneman, G. Cong, W. Fan, and
A. Kementsietsidis. Using partial evaluation in
distributed query evaluation. In Proceedings of the
32nd international conference on Very large data
bases, pages 211–222. VLDB Endowment, 2006.

[4] J. Cheng, J. X. Yu, X. Lin, H. Wang, and S. Y. Philip.
Fast computation of reachability labeling for large
graphs. In Advances in Database Technology-EDBT
2006, pages 961–979. Springer, 2006.

[5] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu.
Fast computing reachability labelings for large graphs
with high compression rate. In Proceedings of the 11th
international conference on Extending database
technology: Advances in database technology, pages
193–204. ACM, 2008.

[6] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels.
SIAM Journal on Computing, 32(5):1338–1355, 2003.

[7] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[8] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding
regular expressions to graph reachability and pattern
queries. In Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, pages 39–50. IEEE, 2011.

[9] W. Fan, X. Wang, and Y. Wu. Performance guarantees
for distributed reachability queries. Proceedings of the
VLDB Endowment, 5(11):1304–1316, 2012.

[10] A. Halverson, J. Burger, L. Galanis, A. Kini,
R. Krishnamurthy, A. N. Rao, F. Tian, S. D. Viglas,
Y. Wang, J. F. Naughton, et al. Mixed mode xml
query processing. In Proceedings of the 29th
international conference on Very large data
bases-Volume 29, pages 225–236. VLDB Endowment,
2003.

[11] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang.
Computing label-constraint reachability in graph
databases. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data,
pages 123–134. ACM, 2010.

[12] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficiently
answering reachability queries on very large directed
graphs. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
pages 595–608. ACM, 2008.

[13] N. D. Jones. An introduction to partial evaluation.
ACM Computing Surveys (CSUR), 28(3):480–503,
1996.

[14] I. Konstas, V. Stathopoulos, and J. M. Jose. On social
networks and collaborative recommendation. In
Proceedings of the 32nd international ACM SIGIR
conference on Research and development in
information retrieval, pages 195–202. ACM, 2009.

[15] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of data, pages 135–146. ACM, 2010.

[16] J. H. Reif. Depth-first search is inherently sequential.

Information Processing Letters, 20(5):229–234, 1985.

[17] J. Scott, T. Ideker, R. M. Karp, and R. Sharan.
Efficient algorithms for detecting signaling pathways
in protein interaction networks. Journal of
Computational Biology, 13(2):133–144, 2006.

[18] M. Sevalnev. From prefix computation on pram for
finding euler tours to usage of hadoop-framework for
distributed breadth first search, 2010.

[19] M. Shoaran and A. Thomo. Fault-tolerant
computation of distributed regular path queries.
Theoretical Computer Science, 410(1):62–77, 2009.

[20] D. Suciu. Distributed query evaluation on
semistructured data. ACM Transactions on Database
Systems (TODS), 27(1):1–62, 2002.

[21] J. Tang, D. Zhang, and L. Yao. Social network
extraction of academic researchers. In ICDM’07, pages
292–301, 2007.

[22] G. Tel. Distributed graph exploration. Obtained from
http://carol. wins. uva. nl/ delaat/ netwerken
college/explo. pdf, 1997.

[23] J. Yang and J. Leskovec. Patterns of temporal
variation in online media. In Proceedings of the fourth
ACM international conference on Web search and
data mining, pages 177–186. ACM, 2011.

[24] J. Yang and J. Leskovec. Defining and evaluating
network communities based on ground-truth. In
Proceedings of the ACM SIGKDD Workshop on
Mining Data Semantics, page 3. ACM, 2012.

[25] H. Yildirim, V. Chaoji, and M. J. Zaki. Grail: Scalable
reachability index for large graphs. Proceedings of the
VLDB Endowment, 3(1-2):276–284, 2010.

